

Date Planned ://	Daily Tutorial Sheet-7	Expected Duration : 90 Min		
Actual Date of Attempt ://	JEE Advanced (Archive)	Exact Duration :		

Actu	al Date	of Attempt : _	_/_/_	Ji	EE Advanced	(Archive)	l	Exact Duration	on :		
91.	Stater	Statement-1: Al(OH) ₃ is amphoteric in nature.									
	Statemant-2: Al – O and O – H bonds can be broken with equal case in Al(OH) ₃ . (1998)										
	(A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-2								Statement-1		
	(B)	Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for									
		Statement-1									
	(C)	Statement-1 is True, Statement-2 is False									
	(D)	(D) Statement-1 is False, Statement-2 is True									
92.	In compounds of type ECl_3 , where $E=B,P,As$ or Bi , the angles $Cl-E-Cl$ for different E are in the										
	order: (1999)										
	(A)	$\mathbf{A)} \qquad \mathbf{B} > \mathbf{P} = \mathbf{A}\mathbf{s} = \mathbf{B}\mathbf{i}$				B > P > As > Bi					
	(C)	B < P = As = Bi				B < P < As < Bi					
93.	On heating ammonium dichromate, the gas evolved is: (1999)										
	(A)	oxygen	(B)	ammonia		nitrous oxide	(D)	nitrogen			
94.	One m	ole of calcium	nhosnhid	e on reactio	n with excess	water gives :			(1999)		
01.	(A)	one mole of		c off redecte	(B)	two moles of phosphoric acid					
	(C)	two moles of phosphine			(D)	one mole of phosphorus pentoxide					
95.		Ammonia, on reaction with hypochlorite anion, can form:							(1999)		
	(A)	NO	(B)	NH ₄ Cl	(C)	N_2H_4	(D)	HNO_2			
96.	In the	In the contact process for industrial manufacture of sulphuric acid some amount of sulphuric acid is									
	used as a starting material. Explain briefly. What is the catalyst used in the oxidation of SO_2 ? (1999)										
97.	In the following equation, $A + 2B + H_2O \longrightarrow C + 2D$ (A = HNO ₂ , B = H ₂ SO ₃ , C = NH ₂ OH). Identify D.										
	Draw the structures of A, B, C and D. (1999)										
98.		nia can be dri	•						(2000)		
	(A)	conc. H ₂ SO	4 (B)	P_4O_{10}	(C)	CaO	(D)	anhydrou	s CaCl ₂		
99.	The nu	The number of P-O-P bonds in cyclic metaphosphoric acid is: (2000)									
	(A)	zero	(B)	two	(C)	three	(D)	four			
100.	Give re	eason(s) why ϵ	elemental	nitrogen exi	sts as a diato	mic molecule w	hereas (elemental ph	osphorus as a		
	tetraat	tomic molecule	e.						(2000)		
101.	Draw	the molecular	r structur	es of XeF ₂	, XeF ₄ and X	${ m eO_2F_2}$ indicatin	ng the	location of l	one pair(s) of		
	electro	ons.							(2000)		
102.	Give a	Give an example of oxidation of one halide by another halogen. Explain the feasibility of the reaction.									
									(2000)		
103.	The nu	The number of $S-S$ bonds in sulphur trioxide trimer (S_3O_9) is:									
	(A)	three	(B)	two	(C)	one	(D)	zero			

- 104. Starting from $SiCl_4$, prepare the following in steps not exceeding the number given in parentheses (give reactions only):
 - (i) Silicon (1)
 - (ii) Linear silicone containing methyl groups only (4)
 - (iii) Na_2SiO_3 (3)
- **105. Statement-1:** Between $SiCl_4$ and CCl_4 , only $SiCl_4$ reacts with water.

Statemant-2: $SiCl_4$ is ionic and CCl_4 is covalent.

(2001)

- (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1
- **(B)** Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- (C) Statement-1 is True, Statement-2 is False
- **(D)** Statement-1 is False, Statement-2 is True